Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Food Chem ; 452: 139494, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38723566

ABSTRACT

This study explores the impact of postharvest storage temperatures (4 °C and 25 °C) on starch metabolism and textural attributes of glutinous lotus root. While starch metabolism is a well-known factor influencing texture, changes in powdery and sticky qualities have remained unexplored. Our research reveals that storing lotus roots at 4 °C delays water dissipation, amylopectin reduction, and the decline in textural elements such as hardness, adhesiveness, springiness, gumminess, and resilience. Lower temperatures postpone amylopectin reduction and sugar interconversion, thereby preserving the sticky texture. Additionally, they suppress starch formation, delay starch metabolism, and elevate the expression of genes involved in starch metabolism. The correlation between gene expression and root texture indicates the critical role of gene regulation in enzyme activity during storage. Overall, low-temperature storage extends lotus root preservation by regulating metabolite content, enzyme activities, and the corresponding genes involved in starch metabolism, preserving both intrinsic and external root quality.

2.
Int J Biol Macromol ; : 132189, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723812

ABSTRACT

Intelligent packaging with freshness indication capability can help consumers purchase fresh food. However, current research primarily focuses on carbon dioxide-sensitive intelligent packaging, with limited research on water vapor-sensitive indication packaging. In this study, the water vapor-sensitive indicator membrane was prepared and used to determine the freshness of mushrooms. The results of this study showed that the water permeability of the indicator membrane decreased from 33.17 % to 21.59 % with the increase of Polyethylene glycol-400(PEG-400) content in methylcellulose(MC) membrane, and the contact angle of the indicator membrane increased from 87 % to 98 % with the addition of PEG-400. The addition of plasticizer PEG-400 increased the hydrophobicity of the indicator film, which could be attributed to the improvement of the molecular arrangement and crystallinity of the indicator film by the addition of PEG-400. After encountering water, the transparency of the indicator membrane changes from completely opaque (white) to transparent. Addition of PEG-400 reduces the rate of change in the transparency of the indicator membrane. The indicator membrane was successfully used to indicate the freshness of mushrooms and effectively reflected the freshness of mushrooms during storage. This technology could be applied to measure the freshness of other foods.

3.
Front Cell Dev Biol ; 12: 1372847, 2024.
Article in English | MEDLINE | ID: mdl-38633106

ABSTRACT

Exosomes are small extracellular vesicles secreted by cells, ranging in size from 30 to 150 nm. They contain proteins, nucleic acids, lipids, and other bioactive molecules, which play a crucial role in intercellular communication and material transfer. In tumor immunity, exosomes present various functions while the following two are of great importance: regulating the immune response and serving as delivery carriers. This review starts with the introduction of the formation, compositions, functions, isolation, characterization, and applications of exosomes, and subsequently discusses the current status of exosomes in tumor immunotherapy, and the recent applications of exosome-based tumor immunity regulation and antitumor drug delivery. Finally, current challenge and future prospects are proposed and hope to demonstrate inspiration for targeted readers in the field.

4.
Int Orthop ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451310

ABSTRACT

PURPOSE: We aimed to evaluate the safety and effectiveness of three-dimensional (3D)-printed guide plates for assisting in the positioning of the rotation axis of an elbow-hinged external fixator. METHODS: Terrible triad (TT) patients, who were screened using the predefined inclusion and exclusion criteria, underwent installation of a hinged external fixator on the basis of internal fixation; 3D-printed guide plates, generated from the patient's imaging data, assisted in positioning the rotation axis. All patients received the same peri-operative management and were followed up at six, 12, 24, and 48 weeks postoperatively. The duration of positioning pin placement, the number of fluoroscopies, pin placement success rate, types and incidence of post-operative complications, and the Mayo elbow performance score (MEPS) of the diseased elbow and range of motion (ROM) of both elbows were assessed. RESULTS: In 25 patients who completed the follow-up, the average time required for positioning pin placement was 329.32 ± 42.38 s (263-443 s), the average number of fluoroscopies was 2.32 ± 0.48 times (2-3 times), and the pin placement success rate was 100%. At the last follow-up, the mean MEPS of the diseased elbow was 97.50 ± 6.92 (75-100), with an excellent and good rate of 100%, and all patients demonstrated stable concentric reduction. The average range of flexion and extension was 135.08° ± 17.10° (77-146°), while the average range of rotation was 169.21° ± 18.14° (108-180°). No significant difference was observed in the average ROM between the both elbows (P > 0.05). Eight (32%) patients developed post-operative complications, including elbow stiffness due to heterotopic ossification in three (12%) patients, all of whom did not require secondary intervention. CONCLUSION: Utilizing 3D-printed guide plates for positioning the rotation axis of an elbow-hinged external fixator significantly reduced intra-operative positioning pin placement time and the number of fluoroscopies with excellent positioning results. Satisfactory results were also obtained in terms of post-operative complications, elbow ROM, and functional scores.

5.
Food Chem ; 447: 138952, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38461720

ABSTRACT

The edible coating is proved to be a convenient approach for fruit preservation. Among these published explorations, naturally sourced macromolecules and green crosslinking strategies gain attention. This work centers on edible coatings containing Ca2+ as crosslinker for the first time, delving into crosslinking mechanisms, include alginate, chitosan, Aloe vera gel, gums, etc. Additionally, the crucial functions of Ca2+ in fruit's quality control are also elaborated in-depth, involving cell wall, calmodulin, antioxidant, etc. Through a comprehensive review, it becomes evident that Ca2+ plays a dual role in fruit edible coating. Specifically, Ca2+ constructs a three-dimensional dense network structure with polymers through ionic bonding. Moreover, Ca2+ acts directly with cell wall to maintain fruit firmness and serve as a second messenger to participate secondary physiological metabolism. In brief, coatings containing Ca2+ present remarkable effects in preserving fruit and this work may provide guidance for Ca2+ related fruit preservation coatings.


Subject(s)
Edible Films , Food Preservation , Food Preservation/methods , Calcium/analysis , Polymers/analysis , Fruit/chemistry
6.
Adv Mater ; 36(11): e2309868, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095146

ABSTRACT

Human-machine interaction (HMI) technology shows an important application prospect in rehabilitation medicine, but it is greatly limited by the unsatisfactory recognition accuracy and wearing comfort. Here, this work develops a fully flexible, conformable, and functionalized multimodal HMI interface consisting of hydrogel-based sensors and a self-designed flexible printed circuit board. Thanks to the component regulation and structural design of the hydrogel, both electromyogram (EMG) and forcemyography (FMG) signals can be collected accurately and stably, so that they are later decoded with the assistance of artificial intelligence (AI). Compared with traditional multichannel EMG signals, the multimodal human-machine interaction method based on the combination of EMG and FMG signals significantly improves the efficiency of human-machine interaction by increasing the information entropy of the interaction signals. The decoding accuracy of the interaction signals from only two channels for different gestures reaches 91.28%. The resulting AI-powered active rehabilitation system can control a pneumatic robotic glove to assist stroke patients in completing movements according to the recognized human motion intention. Moreover, this HMI interface is further generalized and applied to other remote sensing platforms, such as manipulators, intelligent cars, and drones, paving the way for the design of future intelligent robot systems.


Subject(s)
Artificial Intelligence , Robotics , Humans , Hydrogels , Movement/physiology , Electromyography/methods
7.
Macromol Biosci ; 23(12): e2300251, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863121

ABSTRACT

Ultraviolet (UV) radiation is a major cause of skin photoaging through generating excessive oxidative stress and inflammation. One of the strategies is to use photo-chemoprotectors, such as natural products with antioxidant and anti-inflammatory properties, to protect the skin from photo damage. The present study investigates the photoprotective potentials of topical administration of unhydrolyzed collagen, epigallocatechin gallate (EGCG), and their combination against ultraviolet B (UVB)-induced photoaging in nude mice. It is found that both the solo and combined pretreatments could recover UVB-induced depletion of antioxidative enzymes, including superoxide dismutase and glutathione peroxidase (GSH-Px), as well as an increase of lipid peroxide malondialdehyde and inflammatory tumor necrosis factor-α. Meanwhile, the UVB-stimulated skin collagen degradation is attenuated significantly with drug treatments, which is evidenced by expression analysis of matrix metalloproteinase-1 and hydroxyproline. Additionally, the mouse skin histology shows that the drug-pretreated groups possess decreased epidermis thickness and normal collagen fiber structure of the dermis layer. These results demonstrate that both EGCG and collagen can protect the skin against UVB-induced skin photoaging. Synergistically, the combination of them shows the maximum prevention to skin damage, showing its potential in the application of anti-photoaging formulation products.


Subject(s)
Skin Aging , Animals , Mice , Mice, Nude , Antioxidants/pharmacology , Collagen/metabolism , Skin/metabolism , Ultraviolet Rays/adverse effects
8.
Foods ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37761197

ABSTRACT

Freshness is one of the main factors affecting consumers' purchase of food. The freshness indicator labels of packaged fresh green bell pepper (Capsicum annuum L.) and greengrocery (Brassica chinensis L.) were constructed, and pH-sensitive indicator labels based on the dye of anthocyanin and the mixing dye of methyl red and bromothymol blue were prepared in this study. At the same time, the color, chlorophyll content and vitamin C content of vegetables were measured in order to explore the applicability of indicator labels in the cool chain transportation of vegetables. Compared with the nature dye, the chemical dye-type indicator labels are more sensitive to pH changes. The results showed that the mixed indicator intelligent label had the best indication effect, and the MB 2 (mixing 1 g/L methyl red and bromothymol blue solutions at a ratio of 3:2 with a concentration of 70 mL/L in indicator film solution) indicator label could effectively indicate the freshness changes in vegetables during storage. Meanwhile, the color changes of the MB 2-type indicator label were correlated with the colors change of the sample, changes in nutrients, and changes in CO2 content inside the packaging. In addition, freshness detection models for green bell pepper and greengrocery by using color information of MB 2 intelligent labels were established. Hence, this pH-sensitive label can be applied as a promising intelligent packaging for non-destructively monitoring the freshness of respiratory and non-respiratory climacteric vegetables.

9.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36908217

ABSTRACT

Zizania latifolia is an aquatic and medicinal plant with a long history of development in China and the East Asian region. The smut fungus "Ustilago esculenta" parasitizes Z. latifolia and induces culm expansion to form a vegetable named Jiaobai, which has a unique taste and nutritional attributes. However, the postharvest quality of water bamboo shoots is still a big challenge for farmers and merchants. This paper traced the origin, development process, and morphological characteristics of Z. latifolia. Subsequently, the compilation of the primary nutrients and bioactive substances are presented in context to their effects on ecology a postharvest storage and preservation methods. Furthermore, the industrial, environmental, and material science applications of Z. latifolia in the fields of industry were discussed. Finally, the primary objective of the review proposes future directions for research to support the development of Z. latifolia industry and aid in maximizing its value. To sum up, Z. latifolia, aside from its potential as material it can be utilized to make different productions and improve the existing applications. This paper provides an emerging strategy for researchers undertaking Z. latifolia.

10.
Crit Rev Food Sci Nutr ; 63(27): 8975-8991, 2023.
Article in English | MEDLINE | ID: mdl-35416723

ABSTRACT

Nostoc sphaeroides is an edible Cyanobacterium which has high nutritional value and is widely used in dietary supplements and therapeutic products. N. sphaeroides contains protein, fatty acid, minerals and vitamins. Its polysaccharides, phycobilin, phycobiliproteins and some lipids are highly bioactive. Thus, N. sphaeroides possesses anti-oxidation, anti-inflammation and cholesterol reducing functions. This paper reviews and evaluates the literature on nutritionally and functionally important compounds of N. sphaeroides. It also reviews and evaluates the processing of technologies used to process N. sphaeroides from fresh harvest to dry particulates including pretreatment, sterilization and drying, including their impact on sensorial and nutritional values. This review shows that a suitable combination of ultrasound, radio frequency and pulse spouted microwave with traditional sterilization and drying technologies greatly improves the sensorial and nutritive quality of processed N. sphaeroides and improves their shelf life; however, further research is needed to evaluate these hybrid technologies. Once suitably processed, N. sphaeroides can be used in food, cosmetics and pharmaceutical drugs as an ingredient.


Subject(s)
Nostoc , Dietary Supplements/analysis , Cholesterol , Desiccation
11.
J Nanobiotechnology ; 20(1): 136, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35292034

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets (e.g., MoS2) with metallic phase (1T or 1T´ phase) have been proven to exhibit superior performances in various applications as compared to their semiconducting 2H-phase counterparts. However, it remains unclear how the crystal phase of 2D TMD nanosheets affects their sonodynamic property. In this work, we report the preparation of MoS2 nanosheets with different phases (metallic 1T/1T´ or semiconducting 2H) and exploration of its crystal-phase effect on photothermal-enhanced sonodynamic antibacterial therapy. Interestingly, the defective 2D MoS2 nanosheets with high-percentage metallic 1T/1T´ phase (denoted as M-MoS2) present much higher activity towards the ultrasound-induced generation of reactive oxygen species (ROS) as compared to the semiconducting 2H-phase MoS2 nanosheets. More interestingly, owing to its metallic phase-enabled strong absorption in the near-infrared-II (NIR-II) regime, the ultrasound-induced ROS generation performance of the M-MoS2 nanosheets can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after modifying with polyvinylpyrrolidone, the M-MoS2 nanosheets can be used as an efficient sonosensitizer for photothermal-enhanced sonodynamic bacterial elimination under ultrasound treatment combining with NIR-II laser irradiation. This study demonstrates that metallic MoS2 nanosheets can be used as a promising sonosensitizer for antibacterial therapy, which might be also promising for cancer therapies.


Subject(s)
Anti-Bacterial Agents , Molybdenum , Anti-Bacterial Agents/pharmacology , Bacteria , Molybdenum/chemistry , Molybdenum/pharmacology , Povidone
12.
Materials (Basel) ; 14(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34832326

ABSTRACT

It is important to detect thrombin due to its physiological and pathological roles, where rapid and simple analytical approaches are needed. In this study, an aptasensor based on fluorescence attenuation kinetics for the detection of thrombin is presented, which incorporates the features of stilbene and aptamer. We designed and synthesized an aptasensor by one-step coupling of stilbene compound and aptamer, which employed the adaptive binding of the aptamer with thrombin to cause a change in stilbene fluorescence attenuation kinetics. The sensor realized detection of thrombin by monitoring the variation in apparent fluorescence attenuation rate constant (kapp), which could be further used for probing of enzyme-aptamer binding. In comprehensive studies, the developed aptasensor presented satisfactory performance on repeatability, specificity, and regeneration capacity, which realized rapid sensing (10 s) with a limit of detection (LOD) of 0.205 µM. The strategy was successful across seven variants of thrombin aptasensors, with tunable kapp depending on the SITS (4-Acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid disodium salt hydrate) grafting site. Analyte detection mode was demonstrated in diluted serum, requiring no separation or washing steps. The new sensing mode for thrombin detection paves a way for high-throughput kinetic-based sensors for exploiting aptamers targeted at clinically relevant proteins.

13.
Front Cell Dev Biol ; 9: 751079, 2021.
Article in English | MEDLINE | ID: mdl-34692704

ABSTRACT

Exosomes are cell-secreted nanoparticles (generally with a size of 30-150 nm) bearing numerous biological molecules including nucleic acids, proteins and lipids, which are thought to play important roles in intercellular communication. As carriers, exosomes hold promise as advanced platforms for targeted drug/gene delivery, owing to their unique properties, such as innate stability, low immunogenicity and excellent tissue/cell penetration capacity. However, their practical applications can be limited due to insufficient targeting ability or low efficacy in some cases. In order to overcome these existing challenges, various approaches have been applied to engineer cell-derived exosomes for a higher selectivity and effectiveness. This review presents the state-of-the-art designs and applications of advanced exosome-based systems for targeted cargo delivery. By discussing experts' opinions, we hope this review will inspire the researchers in this field to develop more practical exosomal delivery systems for clinical applications.

14.
Molecules ; 26(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34641361

ABSTRACT

Prunus mume blossom is an edible flower that has been used in traditional Chinese medicine for thousands of years. Flavonoids are one of the most active substances in Prunus mume blossoms. The optimal ultrasonic-assisted enzymatic extraction of flavonoids from Prunus mume blossom (FPMB), the components of FPMB, and its protective effect on injured cardiomyocytes were investigated in this study. According to our results, the optimal extraction process for FPMB is as follows: cellulase at 2.0%, ultrasonic power at 300 W, ultrasonic enzymolysis for 30 min, and an enzymolysis temperature of 40 °C. FPMB significantly promoted the survival rate of cardiomyocytes and reduced the concentration of reactive oxygen species (ROS). FPMB also improved the activities of proteases caspase-3, caspase-8, and caspase-9 in cardiomyocytes. The cardiomyocyte apoptosis rate in mice was significantly reduced by exposure to FPMB. These results suggest that the extraction rate of FPMB may be improved by an ultrasonic-assisted enzymatic method. FPMB has a protective effect on the injured cardiomyocytes.


Subject(s)
Enzymes/metabolism , Flavonoids/pharmacology , Myocytes, Cardiac/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Prunus/chemistry , Ultrasonics/methods , Animals , Male , Mice , Myocytes, Cardiac/pathology , Myocytes, Cardiac/radiation effects
15.
Food Res Int ; 145: 110405, 2021 07.
Article in English | MEDLINE | ID: mdl-34112408

ABSTRACT

The effects of ultrasound-assisted thawing (at ultrasonic frequencies of 45, 80 and 100 kHz) and water immersion thawing on gelling and 3D printing properties of silver carp surimi were examined. Ultrasound-assisted thawing (UT) can save 13.5%~40.4% time, and high ultrasonic frequency (80 kHz and 100 kHz) did not cause high thawing loss. Thawing at higher ultrasonic frequency could reduce the damage of the secondary and tertiary structure of myofibrillar proteins. No significant differences were observed for the main relaxation component (T22) and its peak area proportion (P22), and rheological properties, resulting in similar printing performance. After steam heating, cuboid samples in UT-100 kHz group kept the best geometrical shapes and had the highest hardness, springiness, and chewiness. Thus, ultrasound-assisted thawing provides a promising thawing method in food materials of 3D printing.


Subject(s)
Carps , Animals , Colloids , Food Handling , Gels , Printing, Three-Dimensional
16.
Food Res Int ; 142: 110215, 2021 04.
Article in English | MEDLINE | ID: mdl-33773693

ABSTRACT

This study aimed to investigate 4D changes in colors and flavors of 3D-printed healthy food products in response to an external or internal pH stimulus. The formulations obtained by 3D printing of multi-smart materials, comprised of the combination of red cabbage juice, vanillin powder, potato starch and different fruit juices were used. 3D printing ability of red cabbage juice and vanillin powder affected by different potato starch concentrations was first studied. Then, changes in color, texture, flavor (by E-nose) and taste (by E-tongue) induced by the stimulus were determined. Results revealed that the color of the 3D-printed product changed from blue (control sample) to red, purple, violet, blue, blue-green, and green-yellow colors when sprayed with pH solutions of 2, 3-4, 5-6, 7, 8-9, and 10, respectively. In addition, clear differences in aroma and taste profiles among pH samples were detected. Moreover, dried 4D product samples exhibited color and anthocyanins stability when stored in ambient temperature for three weeks. This study is important for manufacturing new healthy 3D-printed food products with desired and attractive sensory characteristics, which can be particularly significant to people with poor appetite.


Subject(s)
Fruit and Vegetable Juices , Taste , Anthocyanins/analysis , Humans , Hydrogen-Ion Concentration , Printing, Three-Dimensional
17.
Crit Rev Food Sci Nutr ; 61(8): 1279-1292, 2021.
Article in English | MEDLINE | ID: mdl-32342714

ABSTRACT

Fish products are one of the preferred products in modern healthy diets, because they contain unqualified proteins, polyunsaturated fatty acids and a variety of vitamins and minerals. However, because of their vulnerability to deterioration, methods to maintain their freshness have attracted wide attention. Intelligent packaging can effectively monitor the quality and safety of fish products, provide warning, and has a great market and development potential. Therefore, this paper reviews the research progress of intelligent packaging technology used to monitor the freshness of fish products. The quality attributes of freshness of fish products are summarized. The classification, principle and latest application progress of three advanced technologies, indicator, sensor and radio frequency identification (RFID), are summarized. In addition, the advantages and disadvantages of the intelligent packaging technology for monitoring the freshness of products are discussed, and the current research results are summarized and prospected.


Subject(s)
Fish Products , Food Packaging , Animals , Technology
18.
Sci Rep ; 9(1): 8997, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222037

ABSTRACT

Cancer cells undergoing epithelial-mesenchymal transition (EMT) acquire stem cell-like phenotype associated with malignant behaviour, chemoresistance, and relapse. Current two-dimensional (2D) in-vitro culture models of tumorigenesis are inadequate to replicate the complexity of in-vivo microenvironment. Therefore, the generation of functional three-dimensional (3D) constructs is a fundamental prerequisite to form multi-cellular tumour spheroids for studying basic pathological mechanisms. In this study, we focused on two major points (i) designing and fabrication of 3D hybrid scaffolds comprising electrospun fibers with cancer cells embedded within hydrogels, and (ii) determining the potential roles of 3D hybrid scaffolds associated with EMT in cancer progression and metastasis. Our findings revealed that 3D hybrid scaffold enhances cell proliferation and induces cancer cells to undergo EMT, as demonstrated by significant up-regulation of EMT associated transcriptional factors including Snail1, Zeb1, and Twist2; and mesenchymal markers whereas epithelial marker, E-Cadherin was downregulated. Remarkably, this induction is independent of cancer cell-type as similar results were obtained for breast cancer cells, MDA-MB-231 and gastric cancer cells, MKN74. Moreover, the hybrid scaffolds enrich aggressive cancer cells with stem cell properties. We showed that our 3D scaffolds could trigger EMT of cancer cells which could provide a useful model for studying anticancer therapeutics against metastasis.


Subject(s)
Biomedical Engineering , Epithelial-Mesenchymal Transition , Hydrogels , Neoplasms/pathology , Tissue Scaffolds , Biocompatible Materials , Biomarkers , Biomedical Engineering/methods , Cell Culture Techniques , Cell Line, Tumor , Fluorescent Antibody Technique , Humans , Spheroids, Cellular
19.
Adv Healthc Mater ; 8(9): e1801378, 2019 05.
Article in English | MEDLINE | ID: mdl-30901162

ABSTRACT

Electrospun fibrous matrices, mimicking extracellular matrix (ECM) hierarchical structures, are potential scaffolds for wound healing. To design functional scaffolds, it is important to explore the interactions between scaffold topographic features and cellular responses, especially directional migration and phenotypic changes, which are critical functional aspects during wound healing. Here, accelerated and persistent migration of human dermal fibroblasts (HDFs) is observed on fibers with aligned orientation. Furthermore, aligned fibers can induce fibroblast-to-myofibroblast differentiation of HDFs. During wound healing, the presence of myofibroblasts advances wound repair by rendering contractile force and ECM deposition within the early and middle courses, but its continuous persistence in the later event may not be desired due to the contribution in pathological scarring. To tune the balance, it is noted in this work that the introduction of matricellular protein angiopoietin-like 4 (ANGPTL4) is capable of reversing the phenotypic alteration induced by aligned fibers, in a time-dependent manner. These results indicate fibrous matrices with oriented configuration are functional in mediating directional cell migration and phenotypic change. The discoveries further suggest that tissue-engineered fibrous grafts with precise alignment modulation and ANGPTL4 releasing properties may thus be promising to promote wound repair with minimizing scar formation.


Subject(s)
Fibroblasts/cytology , Angiopoietin-Like Protein 4/metabolism , Cell Differentiation/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Extracellular Matrix , Humans , Myofibroblasts/cytology , Skin/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Wound Healing/physiology
20.
Crit Rev Food Sci Nutr ; 57(6): 1239-1255, 2017 Apr 13.
Article in English | MEDLINE | ID: mdl-26055086

ABSTRACT

Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.


Subject(s)
Desiccation , Food Handling , Food Preservation/methods , Food, Preserved , Fruit/chemistry , Vegetables/chemistry , Color , Food Quality , Freeze Drying , Hot Temperature , Microwaves , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...